
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporimg burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existinq data sources
ga henng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden es imateo any other aTecTof Ms
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reoorts i?iS iJli™
Davis Highway, SuKe 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papenvork Reduction Project 07™8) WaTngton DC 20503

1. AGENCY USE ONLY (Leave
Blank)

REPORT DATE
6 June 1997

3. REPORT TYPE AND DATES COVERED

Final Progress Report 15 March 94 to 14 March 97
4. TITLE AND SUBTITLE

Efficient Parallel Semantic/O-O Database Management

AUTHORS

Naphtali Rishe

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Florida International University
School of Computer Science
University Park, ECS 354
Miami, FL 33199

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office

P.O. Box 12211

Research Triangle Park, NC 27709-2211

5. FUNDING NUMBERS

3>A/)H Ot-lf-G-oo^j.

8. PERFORMING ORGANIZATION REPORT
NUMBER

10. SPONSORING / MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should
not be construed as an official Department of the Army position, policy or decision, unless so
designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13

12b, DISTRIBUTION-CODE

ABSTRACT (Maximum 200 words)

We have developed an optimistic concurrency control method for a massively parallel semantic
database machine. Our concurrency control algorithm achieves very fine granularity, ensures
serializability and external consistency, and uses local logical clocks which do not require physical
clock synchronization. We have also developed a dynamic load balancing algorithm which
repartitions data among processors using a fault-tolerant data transfer policy to produce a more
evenly balanced load. We have implemented benchmarks on our experimental semantic database
system that have shown it to be more than competitive with current commercial products. In
addition to these results, we have continued to perform research on semantic databases. Our
research into applying SQL to semantic databases has shown the advantages of the semantic
binary model even when using standard relational languages.

14. SUBJECT TERMS

semantic database, database machine, concurrency control,
load balancing, benchmarks

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
43

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

OTWAI/ffiTß Vf-j!Jjt;i*ji..

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1

,298-102

TITLE: EFFICIENT PARALLEL SEMANTIC/O-O DATABASE MANAGEMENT

FINAL PROGRESS

NAPHTALIRISHE

DATE: 6 June 1997

U.S. ARMY RESEARCH OFFICE

CONTRACT/GRANT NUMBER: DAAH04-94-G-0024

FLORIDA LNTERNATIONAL UNIVERSITY

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION,
UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

19970820 065
Enclosure 3 (Page 1)

TABLE OF CONTENTS

1. List of Appendices

2. Final Progress Report

2.1 Statement of the Problem Studied 1

2.2 Summary of the Most Important Results 1

2.2.1 Concurrency control 1

2.2.2 Load balancing 2

2.2.3 Benchmarks 2

2.2.4 Semantic SQL 3

2.3 List of All Publications and Technical Reports 3

2.4 List of All Participating Scientific Personnel Showing Any Advanced 5
Degrees Earned By Them While Employed on the Project

3. Report of Inventions 5

4. Appendices 6

• Efficient Optimistic Concurrency Control in Massively
Parallel B-Trees with Variable Length Keys

• Load Balancing in a Massively Parallel Semantic Database

• SB2 Benchmark (Consumer Survey Database)

• Semantic SQL

1. LIST OF APPENDICES

• Efficient Optimistic Concurrency Control in Massively Parallel B-trees with Variable
Length Keys

• Load Balancing in a Massively Parallel Semantic Database

• SB2 Benchmark (Consumer Survey Database)

• Semantic SQL

2. FINAL PROGRESS REPORT

2.1. Statement of the Problem Studied
Demands for databases with high efficiency and high throughput have led to the recent
development of several types of database systems utilizing parallel processors. This project
involved research aiming to improve the state of the art of highly parallel database systems.
Both the logical properties (usability) and the physical properties (efficiency) were enhanced.
We developed very efficient algorithms for parallel database management systems in
semantic/object-oriented models. Our approach has several advantages over the currently
known theory and results on database machines:

• Unlike the current database machines based on the contemporary Relational Model of
databases, our work is based on semantic data models (including, in the broad sense,
object-oriented models as well as storage of multi-media data). The use of semantic
models assures better logical properties: friendlier and more intelligent user interfaces,
comprehensive enforcement of integrity constraints, improved database design, greater
flexibility, and substantially shorter application programs (which reduces the
programming effort and facilitates program verification).

• At the physical level, the system is more efficient than existing database systems. The
algorithms and prototype system developed are highly-efficient. In particular, the use of
the semantic model allows better exploitation of the parallelism.

This project focused on two problems: concurrency control and load balancing.

2.2. Summary of the Most Important Results

2.2.1. Concurrency control
We have developed an improved semantic optimistic concurrency control algorithm and a
query optimization technique (lazy queries) that can be used in a massively parallel B-tree
with variable-length keys. B-trees with variable-length keys can be effectively used in a
variety of database types. In particular, we are using this B-tree structure, which also offers
data compression, in our implementation of a semantic object-oriented DBMS. Our
concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve
very fine granularity in conflict detection. Our algorithm contributes smaller transaction
conflict probability by using very fine granularity (attribute or string level granularity). We
have proven that the algorithm ensures serializability and external consistency. Our
algorithm uses local logical clocks and does not require physical clock synchronization. A

z

lazy query execution algorithm is used to reduce the client-server traffi A •
granularity of concurrency control by minimizine the Tmh I mpr°Ve the

2.2.2. Load balancing

^^^^£^^ ? ** -d —ctional load among
transactions that transfer sSin^T? " P "^ &S a S6rieS °f load balancinj
transactions require at^^^^ to »°*~ ^ad balancing'

balancing transactions should be well cooXaL in T TV^ ^ ThUS' the load

time is large, a centralized algorithm perfols wel wth ?' ^ *e *** m°Vement

In our B-tree a centralized loTd hi , , h°Ut becoming a system bottleneck
^^onsJ^^^^l^.^^^ collects data and load

initiating the load balancing C« S^* * ^ distribution Pol-y,
load balancing transactions the load balancin^oH f Pamtl°nS- APart from the

empty partition which is no longed Ä^" T «"** * MW Partlti0n °r delete an

control algorithm maintains iteS^d effi^ ^ ^^^ partition- ^concurrency
performed[according to our algoShm ' n°tWlthstandinS '«ad balancing activity

^;«ss::rd in the " entitied ^ **-* - -
2.2.3. Benchmarks

properties, its V**^i^Z^^TT*i,y tT ^'^ Md <°^<
other DBMS's. ' S °f,en much better ">™ that of the best

Our first semantic benchmark, SB 1, run on a Penri,™ ono
RAM, showed that on certain t,», „f „„. ■ ,t. / Bentmm-200 computer with 128MB of

highly-optimized MySLd^S I™'* Da'abaSe is 30 ,imes faster *» a
da,abasePa,so requijabtno ^ motd ^TUVDBT ^T' ^ ^
the schema of the Oracle database, we managed to ^''0^1 g ' Varia,i0" °f

3 times more than that of SDB hut then ,Z f a ,," ? " Space "^'"merits to about
SDB. A„nough te reslf™- *» /P-d °^a«e was up to ,20 times slower than

(reduce) the space requirements of Smh, , ' WC eXpeCt to further imP"™=
algorithms in the next SDB rdeafe. * ,mpIerae"""S <»"• "™ data compression

similar"^et in^ut !ut sTa h"^ Sim"ar •*"<*«• haS Sh°™
endued SB2 Benchmik (Z^ZJy Da^asT "* "' " "* ^"^

roeans tfiat the same ^XtrXt-IA ££"£

on a server. Oracle, being tuned for one application, will not perform as well for another
application, nor will it perform as well for the same application when users pose new types of
ad-hoc queries.

2.2.4. Semantic SQL

While not directly supported under this project, a related project supported by funding
leveraged from this project has resulted in the adaptation of SQL (Structured Query
Language), which is the standard language for relational databases, to semantic databases.
The original purpose of this adaptation was to be compatible with and be able to
communicate with relational tools. However, it turned out that the size of a typical SQL
program for a semantic database is many times smaller than for an equivalent relational
database. SQL offers significant benefits when used with semantic databases and although
originally intended for relational databases, offers many advantages to the semantic model.
We have implemented a stand-alone SQL server as well as an embedded-SQL preprocessor.

A multi-user semantic database engine has been developed and is now in the testing
phase. A user interface to this engine has been developed using C++ and is also in the testing
phase. Our ODBC driver for the semantic database engine is now fully operational and
allows SQL querying of a semantic database and interoperability with relational database
tools such as Microsoft Access's Query-by-Example tool. Using these tools, the number of
user keystrokes required is in correlation to the size of the generated SQL program. Since the
SQL programs for the semantic database are substantially shorter, the third-party query tools
are much more ergonomic with the semantic database than with the relational databases for
which they were originally designed.

Semantic SQL is detailed in the appendix entitled Semantic SQL.

2.3. List of All Publications and Technical Reports

• G. Cao, N. Rishe. "A Nonblocking Consistent Checkpointing Algorithm for
Distributed Systems." Proceedings of the IASTED Eighth International Conference
Parallel and Distributed Computing and Systems October 16-19, 1996 - Chicago, 111., pp
302-307.

• C. Chen, N. Rishe. "Channel Allocation for Queries Over Integrated Services Digital
Networks." Florida International University School Of Computer Science Technical
Report #96-03.

• C. Liu, A. Ouksel, P. Sistla, J. Wu, C. Yu, and N. Rishe. "G-tree: Performance
evaluation and application in Fuzzy databases", International Conference on
Information and Knowledge Management 1996.

• K. L. Liu, G. J. Lipovski, C. Yu, N. Rishe. "Efficient Processing of One and Two
Dimensional Proximity Queries in Associative Memory." Proceedings of ACM SIGIR
1996, pp 138-146.

• W. Meng, C. Yu, W. Wang and N. Rishe. "Performance Analysis of Three Text-join
Algorithms." IEEE Transactions on Knowledge and Data Engineering, in press.

W. Meng, C. Yu, W. Wang and N. Rishe. "Performance Analysis of several
algorithms for processing Joins between textual attributes." Proceedings of the IEEE
International Data Engineering Conference, 1996, pp. 636-644.

C. Orji, N. Rishe, K. Nwosu. "Data Layout for Interactive Video-on-Demand Storage
Systems." Proceedings of the Eighth International Conference on Software Engineering
and Knowledge Engineering (SEKE '96), Nevada, June 1996, pp 285-292.

C. Orji, N. Rishe, K. Nwosu. "Dynamic Reallocation of Multimedia Data Objects."
Proceedings of the Pacific Conference on Distributed Multimedia Systems, Hong Kong,
pp 163-170.

C. Orji, N. Rishe, K. Nwosu. "Multimedia Object Storage and Retrieval."
Proceedings of the International Symposium on Multimedia Systems, Yokohama, Japan,
March 1996, pp 368-375.

N. Rishe. "Managing Network Resources for Efficient, Reliable Information
Systems," panel position paper, Proceedings of the Third International Conference on
Parallel and Distributed Information Systems (Austin, Texas, September 28-30, 1994),
IEEE Computer Society Press, 1994, pp. 223-226.

N. Rishe. "A Universal Model for Non-procedural Database Languages." Fundamenta
Informaticae, April 1996, pp 31-57.

N. Rishe, D. Barton, M. Sanchez. "Storage and Visualization of Spatial Data in a
High-performance Semantic Database System." Florida International University
Technical Report #95-15.

M. Sanchez, N. Rishe. "Dynamic Bandwidth Allocation for an ISDN WAN." Florida
International University School Of Computer Science Technical Report #96-02.

N. Rishe, A. Shaposhnikov, and W. Sun. "Load Balancing Policy in Massively
Parallel Semantic Database" Proceedings of the First International Conference on
Massively Parallel Computing Systems (Ischia, Italy, May 2-6, 1994), IEEE Computer
Society Press, 1994, pp. 328-333.

N. Rishe, A. Shaposhnikov, S. Graham. "Load Balancing in a Massively Parallel
Semantic Database." Computer Systems Science and Engineering (Special issue on
massively parallel processing), 11, 4 (July 1996), pp. 195-199.

N. Rishe and W. Sun. "A pipeline CASE tool for database design." Proceedings of
SEKE'94: Sixth International Conference on Software Engineering and Knowledge
Engineering, pp. 336-343. KSI, 1994.

N. Rishe, W. Sun, D. Barton, Y. Deng, C. Orji, M. Alexopoulos, L. Loureiro, C.
Ordonez, M. Sanchez, A. Shaposhnikov. "Florida International University High
Performance Database Research Center." SIGMOD Record, 24 (1995), 3, pp. 71-76.

N. Rishe and O. Zhukov. "High Performance Computer Technology for Solving
Complex Physics Problems", International School-Seminar on Automation and
Computing in Nuclear Physics and Astrophysics, Yalta, 1996.

M. Sanchez, D. Barton, N. Rishe. "Application of a High Performance Semantic
Database to GIS Data Requirements." Proceedings of the Eleventh Annual Louisiana

Remote Sensing and Geographic Information Systems. April 18-20, 1995.

• M. Sanchez, D. Barton, N. Rishe. "Semantic Database for Geographic Information
Systems." Proceedings of the IEEE Southeast Conference. April 11-14, 1996, pp 696-
698.

• M. Sanchez, C. Orji, K. Nwosu, N. Rishe. "Time Mechanics as Applied to Event
Ordering." Proceedings of the IEEE Southeast Conference. April 11-14, 1996, pp 661-
664.

• M. Sanchez, N. Rishe, D. Barton. "Specialized GIS Via a High Performance
Semantic Database." Proceedings of the 12th Annual Louisiana Remote Sensing and
Geographic Information Systems Workshop. April 16-18, 1996. Invited Paper.

• L. Yan, W. Sun, N. Prabhakaran, S. Guo, Y. Deng, N. Rishe. "A Dynamic
Hypermedia Model for Interactive Video." Proceedings of 13th International
Conference on Advanced Science and Technology in conjunction with the 2nd
International Conference on Multimedia Information Systems. April 97, Illinois.

• O. Zhukov, N. Rishe, C. Ordonez. "An Approach to Building a Highly Parallel
Computer System." Florida International University School of Computer Science
Technical Report #95-3.

2.4. List of All Participating Scientific Personnel Showing Any Advanced
Degrees Earned By Them While Employed on the Project

Faculty: Naphtali Rishe

Other Personnel: U. Alfaro, M. Chekmasov, M. Chekmasova, M. Drobintsev, E.
Ekanayake, M. Ferreiro, S. Graham, E. Greywoode, R. Hanif, I. Kaprizkina, A. Kirienko,
C. Luo, V. Mallampati, M. Monga, K. Naboulsi, V. Patil, D. Perednya, P. Rusconi, A.
Shaposhnikov, D. Sroka, X. Su, J. Tang, S. Tucker, D. Vasilevsky, S. Wang, M. Woon
Choy,J. Xu

Degrees Awarded: M.S.: E. Ekanayake, K. Naboulsi, V. Patil, S. Wang; B.S.: P.
Rusconi

3. REPORT OF INVENTIONS (BY TITLE ONLY)

"Efficient Optimistic Concurrency Control in Massively Parallel B-trees." Status:
patent application has been prepared, about to be submitted.

"Parallel Semantic DBMS." Status: invention disclosed to the University; entered into
agreement on sharing rights.

4. APPENDICES

Efficient Optimistic Concurrency Control in Massively Parallel
B-trees with Variable Length Keys*

Naphtali Rishe and Artyom Shaposhnikov
©1996

High-performance Database Research Center
School of Computer Science

Florida International University
University Park, Miami, FL 33199

Telephone: (305) 348-2025, 348-2744
FAX: (305)-348-3549; E-mail: {rishen, shaposhn}@fiu.edu

Abstract
This paper proposes an efficient optimistic concurrency control algorithm and a query optimization
technique (lazy queries) used in a massively parallel B-tree with variable-length keys. B-trees with
variable-length keys can be effectively used in a variety of database types. In particular, we show how such
a B-tree is used in our implementation of a semantic object-oriented DBMS. Our concurrency control
algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict
detection. We prove that the algorithm ensures serializability and external consistency. Our algorithm uses
local logical clocks and does not require physical clock synchronization. Lazy query execution algorithm
is used to reduce the client-server traffic and improve the granularity of concurrency control by
minimizing the number of optimistic locks. Most relevant processing is done at the client machines, thus
reducing the data and processing overheads at parallel B-tree servers.

1. Introduction
B-tree data structures are widely used in implementation of databases. B-trees allow to insert,
delete, find, and retrieve a number of database records [Comer-79]. With the advent of parallel
databases that can store thousands of terabytes of data and object-oriented technology, several
new properties of B-tree data structures are highly desirable:

• Transparent access to massive volumes of data. To index data database systems use keys or
object identifiers. A B-tree record is usually divided into two parts: an index part and a data
part. The B-tree records are indexed lexicographically by the index part. The index part in B-
trees is usually of fixed size and the database capacity is limited. A new generation of
databases (for example, [Rishe-92-DDS]) do not have keys at all: the data itself serves as a
key of varying length. In a semantic database implementation, for example, each entity
comprises a large number of strings, each of which corresponding to an attribute or
relationship.

• On-line transaction processing systems demand high transactional and query throughput.
Such throughput requires running many transactions and queries in parallel. Efficient

!This research was supported in part by NASA (under grant NAGW-4080) and ARO (under
BMDO grant DAAH04-0024).

concurrency control and query optimization algorithms are necessary to resolve conflicts
between concurrent transactions.

In this paper we propose algorithms of a new B-tree structure that combines the following
properties:

• Parallel multicomputer operation. We employ fast optimistic concurrency control.
Granularity at the level of strings is attained. However, there is no overhead in the physical
data structure.

• Semantically safe optimistic locks. We achieve greater degree of safety in transaction
conflict detection than in many algorithms that use locking. Even if transaction relies on
absence of some data in the B-tree, and this data was inserted by another concurrent
transaction, a conflict will be detected.

• Efficient query execution algorithm - lazy queries - that gives faster execution of complex
queries and better granularity in concurrency control.

• Transparent variable size keys. In our B-tree, the whole record is a key (it is up to the B-tree
client how to divide this key into index and data portion, if that is necessary). A record in our
B-tree is called a string.

• String data compression. All strings in data and index blocks in our B-tree are compressed
by eliminating common prefixes. Additionally, the index strings are compressed by
eliminating redundant suffixes. This results in very short index strings. Index compression
not only reduces the storage requirements but also accelerates the B-tree operations by
keeping more index data in a memory cache.

• Automatic background load balancing that redistributes the data among the database
computers to equalize the data and transactional load.

• Very high capacity. The size of our parallel B-tree is virtually unlimited (specifically, it is

1036 bytes for 64 bit computers).

The rest of this paper is organized as follows. Section 2 defines the logical level of our B-tree. In
Section 3 we describe a semantic database application that utilizes our B-tree and show some
typical database queries. Section 4 describes a query optimization technique "lazy queries" that
we use to reduce the number of server accesses and transaction conflict probability. A parallel B-
tree architecture is presented in Section 5. Our concurrency control algorithm is presented in
Section 6.

2. Elementary B-tree operations
We define B-tree as an implementation of a data type, each instance of which is a lexicographic
ordered set of strings with the following operations:

1. Elementary query (interval) operator [I, r], where / and r are arbitrary strings.

[/, r] S = { x e S | / <x <r }, where < is the lexicographic order of strings.

2. Update operator. Let D and I be disjoint sets of strings:

S + (I,D) = (S - D) u I (I.e. we remove a set of strings D and insert a set I instead).

The next section describes how these elementary operations were used in the implementation of
semantic binary object-oriented database.

3. Sample Application: Semantic DBMS Implementation
The semantic database models in general, and the Semantic Binary Model SBM ([Rishe-92-
DDS] and others) in particular, represent the information as a collection of elementary facts
categorizing objects or establishing relationships of various kinds between pairs of objects. The
central notion of semantic models is the concept of an abstract object, which is any real world
entity that we wish to store information about in the database. The objects are categorized into
classes according to their common properties. These classes, called categories, need not be
disjoint, that is, one object may belong to several of them. Further, an arbitrary structure of
subcategories and supercategories can be defined. The representation of the objects in the
computer is invisible to the user, who perceives the objects as real-world entities, whether
tangible, such as persons or cars, or intangible, such as observations, meetings, or desires.

The database is perceived by its user as a set of facts about objects. These facts are of three
types: facts stating that an object belongs to a category; facts stating that there is a relationship
between objects; and facts relating objects to data, such as numbers, texts, dates, images,
tabulated or analytical functions, etc. The relationships can be of arbitrary kinds; for example,
stating that there is a many-to-many relation address between the category of persons and texts
means that one person may have an address, several addresses, or no address at all.

Logically, a semantic database is a set of facts of three types: categorization of an object: xC,
relationship between two objects: xRy, relationship between an arbitrary object and a value:
xRv. Efficient storage structure for semantic models has been proposed in [Rishe-91-FS]. The
collection of facts forming the database is represented by a file structure which ensures
approximately one disk access to retrieve any of the following:

1. For a given abstract object x, verify/find what categories the object belongs to.
2. For a given category, find its objects.
3. For a given abstract object x and relation R, retrieve all y such that xRy.
4. For a given abstract object y and relation R, retrieve all abstract objects x

such that xRy.
5. For a given abstract object x, retrieve (in one access) all (or several) of its categories and

direct and/or inverse relationships, i.e. relations R and objects y such that xRy or yRx. The
relation R in xRy may be an attribute, i.e. a relation between abstract objects and
values.

6. For a given relation (attribute) R and a given value v, find all abstract objects such
that xRv.

7. For a given relation (attribute) R and a given range of values [v7 , \2], find all
objects x and v such that xRv and v; < v < v2 .

We call the operations 1 through 7 elementary queries. The entire database can be stored in a
single B-tree. This B-tree contains all of the facts of the database (xIC, xRv, xRy) and also
additional information called inverted facts: CIx, Rvx, and yR,„vx (Here, I is the pseudo-
relation IS-IN denoting membership in a category). The inverted facts allow to keep answers to
the queries 2, 4, 6, 7 in a contiguous segment of data in the B-tree and answer them with one
disk access (when the query result is much smaller than one disk block). The direct facts xIC

Query B-tree Implementation
1.x? [xl, xl+ 1]
2. C? [CI, CI+ 1]
3xR? [xR,xR+l]
4. ?Rx [xR,„v,xR,„v+ 1]
5.x?? [x,x+l]
6. ?Rv [Rv, Rv + 1]
7.R[V,..V2]? [Rv7,Rv2+l]

Table 1. Implementation of elementary queries

and xRy allow to answer the queries 1, 3, and 5 with one disk access. This allows both sequential
access according to the lexicographic order of the items comprising the facts and the inverted
facts, as well as random access by arbitrary prefixes of such facts and inverted facts. The facts
which are close to each other in the lexicographic order reside close in the B-tree. (Notice,
that although technically the B-tree-key is the entire fact, it is of varying length and on the
average is only several bytes long, which is the average size of the encoded fact xRy.).

Numeric values in the facts are encoded as substrings using the order-preserving variable-length
number encoding of [Rishe-91-IB].

Table 1 summarizes how the elementary
semantic queries are implemented using the B-
tree interval operators. We use notation S + 1
to denote a string derived from the original
string S by adding 1 to the last byte of S (For
strings encoding abstract objects, this
operation never results in overflow).

For most elementary queries (Queries 1, 3, 4,
5, 6) the number of binary facts is usually
small. Some queries (Queries 2 and 7),

however, may result in a very large number of facts and it may be inefficient to retrieve the
whole query at once.

A common operation in databases is to calculate an intersection of two queries. For example,
consider a query: "Find all objects from category Student that have the attribute BirthYear
1980". This query can be executed using several scenarios:

Scenario 1.
a. Retrieve all persons born in 1980: execute an elementary query "BirthYear 1980 ?"
b. For each person retrieved in the step a verify that the person belongs to the category Student

Scenario 2.
a. Retrieve all persons born in 1980: execute an elementary query "BirthYear 1980 ?"
b. Retrieve all students: execute an elementary query "Student ?"
c. Find an intersection of the objects retrieved in a and b.

In Scenario 1 we retrieve all persons from all categories (Person, Instructor, and Student) who
were born in 1980 and for each person we execute an additional elementary query to verify that
the retrieved person is a student. In this scenario we have to execute a large number of small
queries.

In Scenario 2 we execute only two elementary queries and then find an intersection of the results.
The problem is that the elementary query "Student ?" may result in a very large set of binary
facts. Not only is this very inefficient in terms of expensive communication between client and
server, but also such big query would be affected by any transaction that inserts or deletes
students and our query would be aborted more often than the query in the Scenario 1.

Thus, Scenario 1 is obviously better in our case. Consider now another query: "Find all
instructors born in 1970". The number of persons born in 1970 could be larger or comparable
with the total number of instructors. In this case, Scenario 2 would be much more efficient
because we need to execute only two elementary queries.

The next section introduces a technique of lazy elementary query execution that greatly reduces
the number of disk accesses, the server traffic, and the transaction conflict probability by
automatically reducing one scenario to another. For example, the intersection operator get a
close-to-optimal implementation without keeping any data distribution statistics.

4. Lazy Queries
In our B-tree the actual query execution is deferred until the user actually requests the query
results. We define the elementary lazy query programmatic interface in a B-tree B as follows:

1. Q :=[/,/•] B - define a lazy query [/, r] but do not execute it yet. Let Q.P be a pointer to
future results of the query. Initially Q.PA := " , i.e. P points to an empty string.

2. Seek(Q, x) - Moves the pointer Q.P, so that Q.PA = min\y e [/, r]B \ y > x}.

The actual principal operations on the query results are derived from the above:

1. Read(Q) := Q.PA - reads the current string pointed by the logical pointer Q.P. This
operation results in an error if Q.P = null.

2. Next(Q) := Seek(Q, Read(Q) + 0). We use notation s + 0 to denote a string derived from
the string s by appending a zero byte.

When the Seek operation is executed, the string pointed to by the new logical pointer is fetched
from the B-tree and, normally, a small number of lexicographically close strings is prefetched
and placed in a lazy query cache buffer. It is likely that the next Seek operation will request a
string which is already in the cache buffer, so only a few Seek operations require actual disk and
server access.

Many queries can efficiently use the Seek operation.
For example, we can find the intersection of two lazy
queries Q; and Q2 very efficiently: construct a new
lazy query (lazy intersection) Q3 where the Seek
operation uses algorithm shown in Figure 1.

This algorithm gives an efficient solution for the
sample queries described in the previous section. For
the query "Find all objects from category Student that
have the attribute Birth Year 1980" we use three lazy
queries:

b.Q2

c.Q3

elementary lazy query "BirthYear 1980 ?"
elementary lazy query "Student ?"
Q; & Q2

Seek(Q3,y):

Seeki®!,*);
Seek(Q2,x);
while (Q; .P * null & Q2.P * null &

Q/P^Q^P^) do
ifQ7.P

A>Q2
A.Pthen

SeekCQ^Q^P*)
.else"""'

Seek(Q,,Q2.P
A);

od;
if Q7.P = null or Q2.P = null then

Q5.P:=null
else

Q,.P:=Q;.P;

Figure 1. Algorithm to find intersection
Q3 :=Qy &Q2 Since query Q^ is not actually executed, our

algorithm that finds intersection will not require to
fetch every student from the database: the number of
actual disk accesses to retrieve the students in the query Q2 will be less than or equal to the
number of persons born in 1980. Thus, the cost of the lazy query Q3 will be smaller than the cost
of the optimal solution for elementary queries in Scenario 1 described in the previous section.

For the query "Find all instructors born in 1970" we use three similar lazy queries. Since the
number of instructors is likely to be small, it is possible that all instructors will be fetched in the
first disk access, and the whole query will require a number of server accesses close to 2, which
is the optimal number.

Lazy queries not only result in a smaller number of server accesses. We will show that lazy
queries allow to improve the granularity of our concurrency control algorithm and reduce the
transaction conflict probability.

5. Parallel B-tree
A massively parallel B-tree should perform many queries and transactions simultaneously and its
size should scale to hundreds of terabytes even if the underlying computer hardware supports
only 32 bit addressing. This can be achieved by splitting the B-tree into partitions of about 1
gigabyte in size. The whole B-tree is then a network of computers where each computer holds
one or more B-tree partitions.

Client

Lazy Query

Server Cache

Client

Lazy Query

Server Cache

Server
Partition 1

Server
Partition 2

Partitioning
map

The B-tree partitions themselves must be
indexed. This index is also represented as a B-
tree which is called a Partitioning Map. The
Partitioning Map B-tree can reference
approximately 200,000,000 B-tree partitions.
Since each partition can hold up to about 1GB
of data, the total addressable B-tree space is
limited by 200,000 Terabytes. For 64 bit

computers this limit becomes 1018 times larger,

which is about 10 bytes and is beyond any
practical database size. Figure 1 shows typical
client-server model of parallel B-tree.

Disk

Figure 2: Client-server model of Parallel B-tree

6. Concurrency Control
Our concurrency control algorithm is an optimistic algorithm that first accumulates a transaction,
and then performs it using a 2-phase commit protocol [Gray-79], and backward validation
[Haerder-84] to ensure the serializability and external consistency of transactions. Our algorithm
benefits from and improves upon the validation technique of the [Adya&al-95] algorithm for an
object-oriented database. Their algorithm uses a loosely synchronized physical clocks to achieve
global serialization and detects conflicts at the object level granularity. In our algorithm, a finer
granularity at the level of strings is attained and we used logical clocks to achieve global
serialization; nevertheless, our algorithm does not require maintaining any extra data per string
or per client.

6.1. Accumulation of Transactions
In a parallel B-tree updates and queries made by a client should be verified for conflicts with
updates and queries made simultaneously by the other B-tree clients. A transaction is a group of
B-tree updates and queries which is guaranteed to be consistent with the queries and updates
executed concurrently within other transactions. To create such a group of operations we have
several B-tree operations in addition to the lazy queries defined in Section 4:

1. Insert String x
2. Delete String JC

3. Transaction Begin
4. Transaction End

A transaction is a sequence of all lazy queries and updates (Operations 1,2) executed between the
Transaction Begin and Transaction End. When the Transaction End is executed, all queries and
updates made since the Transaction Begin are checked for conflicts with the queries and updates
made by concurrent transactions. If there is a conflict, the transaction is aborted and the
Transaction End returns an error.

The updates made within a transaction do not change the B-tree immediately. Instead, these
updates are accumulated at the client side in a set of inserted strings I and a set of deleted strings
D. The B-tree strings remain unaffected. The insert and delete operations work as follows:

insert^) = { D := D - {x}; I := I u {x} }
delete(jc) = {I:=I-{A:}; D:=Du{x}}

When Transaction End is executed, the set D is deleted from the B-tree and the set I is inserted
into B-tree:

B := (B - D) u I

During the accumulation of a transaction into sets D and I, our concurrency control algorithm at
the client also accumulates a set V to be used for backward validation. The set V contains the
specification of each subinterval read by a query within the transaction and a timestamp of this
reading. A subinterval is a subrange within a query which subrange was physically retrieved
from one database partition at one logical moment in time. The logical time at a given database
partition is incremented every time a committed transaction physically changes that partition.
The subintervals are stamped with this logical time and a number that identifies the partition in

the system. Thus the set V is {([4, rk], tk, pk)"k=l}, where tk is the timestamp and pk is the
partition number.

In our validation technique, when committing a transaction T, the system does not need to
remember the results of T's queries; it remembers only query specifications [/, r], which are
checked against concurrent transactions at T's commit time. The validation is done against
transaction queues, normally without any disk access.

Lazy queries can be used to further reduce the validation specified by the set V and improve the
granularity in conflict detection. Previous examples have shown that the user does not actually
retrieve all facts from the lazy query interval. The intersection of lazy queries uses the Seek
operation and actually retrieves only a few strings from the original elementary queries. In our
implementation, a lazy query automatically keeps track of those string subranges that have
actually been by the user. This union of subranges can be much smaller than the union of the
original elementary query intervals. This results in a finer transaction granularity and smaller
conflict probability. At the end of transaction execution, the string subranges from all lazy
queries are further optimized by merging intersecting subranges of all lazy queries. This
optimization is done at the client side, which allows us to reduce the server load and the
transaction execution time.

An accumulated transaction is a triple T(I, D, V) of strings to be inserted I, strings to be deleted
D, and string intervals V to be verified.

Note that even if no updates were made, a transaction is still necessary to ensure the consistency
of queries. Thus, a query can produce an accumulated transaction T(I, D, V) with empty sets D
and I.

6.2. Validation Protocol
Validation is necessary to ensure two important properties of transactions: serializability and
external consistency. Serializability means that the committed transactions can be ordered in
such a way that the net result would be the same as if transactions ran sequentially, one at a time.
External consistency means that the serialization order is not arbitrary: if transaction S
committed before T began (in real time), S should be ordered before T.

When a client commits a transaction, the accumulated transaction T is delivered to one of the
database servers. This database server is called the transaction's originator. The transaction
originator splits the arriving transaction into subtransactions Ti according to the partitioning map
and distributes the subtransactions among the database partitions. A subinterval ([lk, rk], tk,pk)
in the set V is distributed to the partition pk (without consulting the partitioning map). This
allows to detect conflicts with system transactions that perform load balancing, which may
change the partitioning map.

The transaction originator uses the 2-phase commit protocol to update the database. In the first
phase, the transaction originator distributes the subtransactions among the database partitions.
Each database partition verifies that no conflicts with any other transaction is possible and sends
a "ready" or "failed" message to the transaction originator. If the transaction originator receives
a "failed" message, it immediately aborts the other subtransactions and notifies the client. When
all database partitions return a "ready" message, the transaction originator sends a "commit"
message to the participating partitions.

In a backward validation protocol, the arriving subtransaction T,(I,,D,,V/) is checked against all
transactions already validated successfully. In our B-tree, each partition maintains a log of
recently committed transactions CL and a log of transactions waiting for commit WL.

We say that a set of string intervals V intersects a set of strings A iff there exists an interval [/, r]
in V such that [l,r] A^0 (i.e. for some x e A: I <x <r).

We also say that two transactions T(Ir, DT, VT) and S(Iy, D5, \s) intersect if:

l.IrnDs * 0 or Iy nDr^0
or
2. Ys intersects Ir u Dr

or
3. Vr intersects Is u Ds

When the subtransaction Tt arrives, it is verified that T, intersects with no transaction S in WL.
Additional verification is necessary to ensure that no query in T, is affected by a recently
committed transaction S in CL. We check that each interval ([lk, rk], tk,nk) in V,- of T,- does not
intersect with the sets Is and Ds of any transaction S in CL that has greater timestamp than tk.

If the subtransaction is successfully verified, it is appended to the WL and the "ready" message
is sent to the transaction originator, otherwise the "failed" message is sent to the transaction
originator.

While normally not requiring any disk access, this algorithm's CPU time is

0(|V,.||X(||WL|| + |CL|V,.|)) where CL|V,. are the committed transactions younger than an

average query in V,. The algorithm can be significantly accelerated by merging small sets in CL
and WL.

7. Proof of Correctness
Our concurrency control algorithm satisfies both serializability and external consistency
requirements. Consider two arbitrary transactions T and S. Any two subtransactions T, and Sk of
T and S for different partitions in our B-tree, are disjoint, i.e. T, does not intersect Sk for all i *
k. Because of this and the definition of intersection, T and S intersect iff for some partition i T,
intersects S,-.

Definition: Relation "71" between transactions that have been successfully performed in our
system: T % S if any of the following conditions (a) and/or (b) holds:
(a) There exists a partition i such that T, intersects S,- and T,- entered CL,- before S,-.
(b) The programmatic transaction that generated S began execution at the client after the

commit of T had been acknowledged to the user, i.e. T completed.

Lemma 1. The relation 7t is acyclic.
Consider an arbitrary number n of transactions and assume that there is a cycle:

T7 7i T2 n ... 7t T" % T1.

Choose an arbitrary partition y where T'j has entered C\J. Let t„ be the physical moment
of time of said entry. Relation T" n T1 implies one of two cases at time te:

1. Condition (b): The transaction T" is already committed.
2. Condition (a): There exists a partition / such that T",- intersects T7,- and T",- entered CL,- before

TV

In both cases there exists a partition of T" in which the physical moment of time when the
subtransaction of T" enters CL is less than t0.

In case 1, T" is already committed and all subtransactions of T" are in CL by the time tg. In case
2, the fact that T enters CLy- at the time t„ and the 2-phase commit protocol implies that the
other subtransactions of T; must be either in WL or CL at the moment t0. Thus, the

subtransaction T;,- must be in WL or CL at the moment t„. According to our backward
validation protocol T",must be in CL at this time (otherwise if T",- is in WL, the intersecting
subtransaction T7,- would be aborted).

Repeating the same argument n times for the relations T"'17t T",..., T2 71 T1, we conclude that
there exists a partition k of T; in which T1 is already in CLft before time t„.

10

Thus, for every partition j of T7 there exists a partition k in which T\ enters CL earlier than T]j

enters CLj. Since T; has a finite number of partitions this implication is false, in contradiction to
the initial assumption.

Therefore, " n " is acyclic. I

Theorem: Our schedule is serializable and externally consistent.

Proof:
Consider an arbitrary set of transaction that have successfully completed in the system. By the
previous Lemma, "71" imposes a partial order on them. According to the known theorem that
"for every partial order there exists a total order that preserves the partial order", there exists a
total order "7t7i" preserving "71". The order "TTTT " defines a serialization of transactions
Ty,...,Tm. The series preserves external consistency because "71" does, by its definition. It
remains to show that every transaction Tk in the series saw the database in a state after all the
previous transactions and before any subsequent transactions in the series, i.e. every query [l,r\
in V* had resulted in

(1) [/,r]£(I',D')
i<k

Consider an arbitrary query ([/,#■], t, p) in Vt. We need to prove that

(2) U,r] X (I'P,D;) = [/,r]£ (l',,D',)
/':T'updated /<*

before I

The left sum is what the query [/,/■] actually saw at the partition p, while the right sum is what it
should have seen if serializability requirement is fulfilled. From the set-theoretical definitions of
queries and transactions it follows that:

[l,r](A + B) = [l,r]A + [l,r]B.

Therefore, (2) is equivalent to:

(3) E [/,r](i;,D;) = X [/,r](l',,D'p)
<:T'updated »'<*

before I

Assume that (3) is not true. Consider two cases:

Case 1.
The left sum in (3) has an extra addend [/,/•] (I Jp ,D Jp) & 0, k < j, i.e. the query [l,r\ may have

seen the results of transaction V that was serialized after T*. This implies that T* intersects V
and T' entered CLp before the moment t and, therefore, before T*.

11

Since the total order relation nn preserves the partial order relation n , T* TTTD T' implies
notfT' 7t Tk). By the definition of relation % , this in turn implies that there is no partition p
such that Ty intersects T* and V entered CLp before T*. Thus, we have a contradiction and this
case can never occur.

Case 2. The left sum does not have some addend [/,#■] {\'p, D
J

p) * 0, j < k, i.e. T* did not see

some updates of transaction V ordered before T*. Like in the previous case, V nn T* implies
not(T* 7t T') and, therefore, there is no partition p such that T* intersects T and T* entered
CLp before V. Since [l,r] (Ijp, D

J
p) * 0, T intersects T* at the partition p. Therefore, V should

have entered CLp before T* . Thus, there is a moment when V is in CLp and T* is in WLp.

Since the left sum does not have the addend (IJ, D J) , Ty must have entered CLp after the

moment /. When T* is checked by the backward validation protocol at the partition p, according
to our query verification algorithm, each query ([/, r] t, p) of Tft should be verified against all
transactions in CLp with timestamp greater than t. Since [/,/•](I jp, D j

p) * 0 for some

transaction T, the verification fails and Tft is aborted. Thus, in our case T* would have been
aborted, and we have a contradiction to our assumption that Tk is a committed transaction.

Thus, the equation (3) is valid and our schedule of transactions is serializable. ■

8. On Load Balancing
A query of transaction execution time is determined by its slowest subquery or subtransaction.
Thus, load balancing is essential in our system to equalize the data and transactional load among
B-tree partitions. In our system, load balancing is performed as a series of load balancing
transactions that transfer small string intervals from one partition to another [Rishe&al-96].

Load balancing transactions require a large amount resources and time to move the data. Thus,
the load balancing transactions should be well coordinated in the system. Since the data
movement time is large, a centralized algorithm performs well without becoming a system
bottleneck. In our B-tree, a centralized load balancing module periodically collects data and load
distribution statistics from all partitions and heuristically generates a data distribution policy,
initiating the load balancing transactions executed at the B-tree partitions. Apart from the load
balancing transactions, the load balancing module can create a new partition or delete an empty
partition which is no longer referred to by any other B-tree partition. Our concurrency control
algorithm maintains its safety and efficiency notwithstanding load balancing activity done
according to our algorithm of [Rishe&al-96].

9. Client String Cache
The query performance can be improved even further by using a client B-tree string cache which
accumulates all strings recently retrieved from all database partitions. This allows to perform
many frequently executed queries in zero server accesses. The B-tree cache stores all strings
retrieved from the database servers along with the timestamp attribute and the partition number
for each string.

Since the attributes of an object constitute lexicographically close strings, it is likely that after
requesting a string the client will later request lexicographically close strings. Thus, the cache

12

performance can be improved by prefetching more than one B-tree block that contain the
requested query.

The client cache significantly improves the performance of our optimistic concurrency protocol.
When a client transaction fails due to a conflict with another transaction which affects some
queries, a list of failed (affected) queries is returned to the client. All failed string ranges are
invalidated in the client cache, and when the transaction is executed again, the client retrieves the
invalidated ranges from the server. When the transaction runs the second time, most of the other
ranges that the user retrieves are already in the string cache and the number of server accesses is
much smaller. This can significantly improve the transaction execution time at the second
attempt. Since the conflict probability is proportional to the execution time, the conflict
probability is also reduced.

10. Livelocks and Exceptional Pessimistic Locks
In rare situations, a transaction may be repeatedly aborted and reexecuted, causing a livelock. To
avoid this, we introduce a pessimistic element in our concurrency control. When a privileged
user desires to protect a new transaction, the user can also designate it as pessimistic.

A transaction in the pessimistic mode has a unique logical identifier assigned by the system. This
identifier has smaller value for older transactions or transactions with higher priority. A
transaction executed in the optimistic mode is "assigned" an infinitely large logical identifier.

A transactional query in a pessimistic mode does not use cache, but is sent directly to the
corresponding database partitions. Each partition maintains an additional log called PL which
logs all pessimistic transactional queries as soon as they are executed. Whenever a new
transaction T conflicts with a query in PL that has a smaller logical identifier than T, T is
aborted. To ensure that a query in pessimistic transaction does not conflict with any transaction
which is ready to commit, the query execution should be delayed until there is no transaction in
WL that conflicts with the query. When an accumulated pessimistic transaction T(I,D,V)
arrives, its verification should be delayed until there is no transaction in WL that conflict with
the sets D or I. A query is removed from PL when its transaction arrives for verification or after
a timeout period, whichever happens first.

This algorithm guarantees successful execution of the transaction with the smallest logical
identifier.

11. Conclusion
In this paper we described our efficient concurrency control algorithm that we used in
implementation of a parallel B-tree server. This algorithm has very high granularity while
avoiding high storage and processing time overheads. Our algorithm uses logical clocks and
does not require physical clock synchronization. The B-tree server can handle variable length
keys and can be used in a variety of databases, including relational, object-oriented, and
semantic. Many of our B-tree features (data compression, concurrency control, lazy queries)
have been implemented in C++ and tested. Preliminary results demonstrated very good
performance.

Lazy queries in a B-tree can significantly improve server performance in case of complex and
large queries. Lazy queries can also decrease the transaction conflict probability, which is

13

essential for on-line transaction processing systems where high contention workloads are
common. Our algorithm has a very fine granularity (attribute or string level granularity), which
also contributes to smaller transaction conflict probability.

12. References
[Adya&al-95] A. Adya, R. Gruber, B. Liskov, U. Masheshwari. "Efficient Optimistic

Concurrency Control Using Loosely Synchronized Clocks," SIGMOD Record, June 1995, v
24 n. 2, pp. 23-34.

[Comer-79] D. Comer. "The Ubiquitous B-tree," ACM Computing Surveys, June 1979, v 11 n. 2.

[Gray-79] J. Gray. "Notes on Database Operating Systems" in R. Bayer, R. Graham, and G.
Seegmuller. Operating Systems: An Advanced Course, pp. 394-481, Spring-Verlag,
1979.

[Haerder-84] T. Haerder. "Observations on Optimistic Concurrency Control," Information
Systems, June 1984, v 9 n. 2 , pp. 111-120.

[Rishe&al-96] N. Rishe, A. Shaposhnikov, S. Graham. "Load Balancing in a massively parallel
semantic database" to appear in the International Journal of Computer Science and
Engineering.

[Rishe-92-DDS] N. Rishe. Database Design: The Semantic Modeling Approach. McGraw-Hill,
1992, 528 pp.

[Rishe-91-FS] N. Rishe. "A File Structure for Semantic Databases", Information Systems, v 16 n.
4, 1991, pp. 375-385.

[Rishe-91-IB] N. Rishe. "Interval-based approach to lexicographic representation and
compression of numeric data," Data & Knowledge Engineering, n 8, 1992, pp. 339-351.

14

thins } and 4

32768

0.2243
0.1968

151.923
70.8443

46P. We would like to
MTiments on the design
ry at Bioomsburg Uni-

>n and design of exper-

Comput Syst Sei & Eng (1996) 4: 195-199
gnggSCRL Publishing Ltd Computer Systems

Science & Engineering

Load balancing in a massively
parallel semantic database

.1-2 Technical Summary.
I.A87-4. Thinking Mach-
nl 1987)
'Performance analysis of
ol ihe Connection Maeh-
d Dist. Sys. (November

d Zahorjan. J 'Adaptive
[■-innuted systems.' IEEE
i. 5 iMay 19X6) pp. 662-

liysis of the Connection
oi)i!i

K S Analytic queuing
HUI concurrency.' IEEE
"3-S2

■nfi'f.v. Dellen Publishing

Naphtali Rishie, Artyom Shaposhnikov and Scott Graham

School of Computer Science. Florida International University. University Park. Miami. FL 33199. USA. Email: rishen@fiu.edu

We are developing a massively parallel semantic database machine. Our basic semantic storage structure ensures balanced load far mast
parts of the database. The load to the other parts of the database is kept balanced by a heuristic algorithm which repartitions data amoni;
processors in our database machine as necessar}1 to produce a more evenly balanced load. We present our inexpensive, dynamic load balanc-
ing method together with a fault- lolerans data transfer policy dial will be used to transfer [he repartinoned data in a way transparent to the
users of the database.

Keywords: DBMS, massive parallelism, semantic data models, load balancing, database machine

1. INTRODUCTION

Database management systems are emerging as prime targets
for enhancement through parallelism. In order for parallel
database machines to be efficient, the processors in the sys-
tem must have comparable load. A massively parallel
database machine which uses thousands of processors will
allow for massive throughput of transactions and queries if
no processors become a bottleneck. This paper proposes a
load balancing method for a massively parallel semantic-
database.

Much work on load balancing for relational databases and
file systems has been done and can be utilized in our
research. For example. Sitaram et a/.1 propose several
dynamic load balancing policies for multi-server file sys-
tems. A dynamic load balancing algorithm for large, shared-
nothing, hypercube database computers which makes use of
relational join strategies is presented in Hua and Su2. Lee
and Hua-1 present a self-adjusting data distribution scheme
which balances computer workload in a multiprocessor
database system at a cell level during query processing. A
run-time reorganization scheme for rule based processing in
large databases is discussed in Stolfo et al.A.

Our database computer will make use of a shared-nothing

architecture. The computational load on each processor of
our database computer will vary directly with the demand for
data on that processor. Imbalances in the number of data
accesses among nodes can be rectified by repartitioning the
database, much as imbalances in computational demands in
process scheduling can be rectified by moving processes
from one machine to another. When a range of facts in our
database is moved from one processor's control to another
processor's control, the load on the first processor will go
down. The methods for determining imbalances in our sys-
tem, and the methods to relieve these imbalances in our sys-
tem, are very similar to the methods used for computational
dynamic load balancing in shared-nothing computers. An
adaptive, heuristic method for dynamic load balancing in a
message-passing multicomputer is presented in Xu and
Hwang5. A semi-distributed approach to load balancing in
massively parallel multicomputer systems is presented in
Ahmad and Ghafoorfi.

Our massively parallel database machine architecture makes
use of a distributed system of many processors, each with ils
own permanent storage device. This shared-nothing approach
requires that any load balancing operations be performed by
message passim:. The data distribution scheme that is used in
our database' system allows load balancing to he achieved by

science & engineering vol II no 4 July 1996 195

N RISHIE ET AL.

data rcpartiiioning among the nodes of our system.
This paper refines the results reported in Rishie et a I.1 and

extends them by adding a fault tolerant data transfer policy
for data rcpartitioning.

2. SEMANTIC BINARY DATABASE
MODEL

The semantic database models in general, and the Semantic
Binary Model SBM (Rishie1* and others) in particular, repre-
sent the information of an application's world as a collection
of elementary facts categorizing objects or establishing rela-
tionships of various kinds between pairs of objects. The cen-
tral notion of semantic models is the concept of an abstract
object, which is any real world entity that we wish to store
information about in the database. The objects are catego-
rized into classes according to their common properties.
These classes, called categories, need not be disjoint - that
is. one object may belong to several classes. Further, an arbi-
trary structure of sub-categories and super-categories can be
defined. The representation of the objects in the computer is
invisible in the user, who perceives the objects as real-world
entities, whether tangible, such as persons or cars, or intangi-
ble, such as observations, meetings, or desires. The database
is perceived by its user as a set of facts about objects. These
facts are of three types: facts stating that an object belongs to
a category: xC: facts staling that there is a relationship
between objects: xRy: and facts relating objects to data, such
as numbers, texts, dales, images, tabulated or analytical
functions, etc: xRv. The relationships can be of arbitrary-
kinds; stating, for example, thai there is a many-to-many
relation address between the category of persons and texts
means that one person may have an address, several address-
es, or no address at all.

3. STORAGE STRUCTURE

An efficient storage structure for semantic models has been
proposed in Rishie1'- "'. The collection of facts forming the
database is represented by a file structure which ensures
approximately I disk access to retrieve queries of any of the
following forms:

1. For a given abstract object x. verify/find what cate-
gories the object belongs lo.

2. For a given category, find its objects.
?. For a given abstract object x and relation R. retrieve

all/certain y such that xRy.
4. For a given abstract object y and relation R, retrieve

all/certain abstract objects x such that xRy.
5. For a given abstract object x. retrieve (in one

access) all (or several) of its direct and/or inverse
relationships, i.e. relations R and objects y such that
xRy or yRx. The relation R in xRy may be an
attribute, i.e. a relation between abstract objects and
concrete objects.

6. For a given relation (attribute) R and a given con-
crete object y, find all abstract objects such that

xRv.

7."" For a given relation (attribute) R and a given range
of concrete objects [y,, y2], find all objects x and y
such that xRy and y < v, ^ Vi.

The entire database can be stored in a single file. This file
contains all of the facts of the database (.vC and xRy) as well
as additional information called inverted facts: C.v. Ry.x. The
inverted facts ensure that answers to queries of forms 2. 4. 6
and 7 are kept in a contiguous segment of data in the
database which allows them to be answered with one disk
access. The direct facts xC and xRy allow the database to
answer queries of forms 1. 3, and 5 with one disk access.
The file is maintained as a B-tree. The variation of the B-tree
used allows both sequential access according to the lexico-
graphic order of the items comprising the facts and the
inverted facts, as well as random access by arbitrary prefixes
of such facts and inverted facts. Facts which are close to
each other in the lexicographic order reside close to each
other in the file. (Notice that although technically the B-trec-
key is the entire fact, it is of varying length and on the aver-
age is onlv several bytes long, which is the average size of
the encoded fact xRy.)

Consider, for example, a database containing information
regarding products manufactured by different companies.
The following set of facts can be a part of a logical instanta-

neous database:

COMPANY
COMPANY-NAME 'IBM'
MANUFACTURED object:
MANUFACTURED object?
PRODUCT
COST 3600
DESCRIPTION Thinkpad'
PRODUCT
COST 100
DESCRIPTION TrackPomt'

The additional inverted facts stored in the database are:

1. COMPANY object 1
2. COMPANY-NAME 'IBM' object I
3. object2 MANUFACTURED-BY object 1
4. object? MANUFACTURED-BY object 1
5. COST ?600 object2
6. COST 100 object?
7. DESCRIPTION Thinkpad' object2
8. DESCRIPTION TrackPoinf object?
9. PRODUCT object2
10. PRODUCT object?

1. object 1
~l object 1
3. object 1
4. object 1
5. object2
6. object2
7. object2
8. object?
9. object?
10. object?

To answer the elementary query "Find all objects manufac-
tured by object 1". we find all the facts whose prefix is
object{jAANUFACTURED. ('_' denotes concatenation.)
These entries are clustered together in the sorted order of
direct facts.

To answer the elementary query "Find all products cost-
ing between $0 and $800". we find all the facts whose prefix
is in the range from COSTJd to COST_800. These entries
are clustered together in the sorted order of inverted facts.

In the massively parallel version that we are developing.

S

the B-tree is pa
residing on a sep
memory) that is
This disk-proces
retrieve informal
processing on tin
the other nodes. !
vant integrity co
mation on the tlis
or updated concu

The queries a
through host ini
copy of the Pan
Since the whole
represented by a
only a small num
cally minimal ar
that is stored on
database is re-p;
propose in this
inexpensive, loo
the shifting of d:
with the normal <

Most of the pi
of a semantic hi i
These facts are
objects, which a
each abstract obi
and since the obi
that traffic to eac
over time. Other
with an inverted ,
tion between an
possible that at s
certain attribute i
or categories. Th
values of a given
ticular inverted ;
together, this
processor/disk pi.
can occur in soni
taining the facts \
file will contain
object. The secoi
with an inverted a
third subfile com
which are poiniei
partitioned evcnl
system. The first
third subfiles ma
block placement :
lioned. By reparti
ly balance the loa.

4. REQUI

We employ a del
ecssing. This mea
formed until they
database managen

196
computer systems science & engineering I vol 11 no 4 july 1

LOAD BALANCING IN A MASSIVELY PARALLEL SEMANTIC DATABASE

) R and a given range
nd.all objects x and y

a single file. This file
(xC and xRy) as well

.cd facts: C.x. Ryx. The
ueries of forms 2. 4. 6
gment of data in the
iswered with one disk
allow the database to
with one disk access,
variation of the B-tree
cording to the lexico-
ing the facts and the

by arbitrary prefixes
;ss which are close to
r reside close to each
technically the B-tree-

iength and on the aver-
is the average size of

containing information
different companies.

rt of a logical instanta-

IBM'
object:
object3

mkpad'

ickPoint"

he database are:

biectl
■ BY object I
■ BY object I

object:
t' ohject3

ad all objects manufac-
facts whose prefix is

lcnotcs concatenation.)
in the sorted order of

'Find all products cost-
II the facts whose prefix
AS7'_8()0. These entries
order of inverted facts,
that we are developing.

the B-tree is partitioned into many small fragments, each
residing on a separate storage unit (e.g. a disk or non-volatile
memory) that is associated with a fairly powerful processor.
This disk-processor pair is called a node. Each node can
retrieve information from the disk, perform the necessary
processing on the data and deliver the result to the user, or to
the other nodes. For updates the node verifies all of the rele-
vant integrity constraints and then stores the updated infor-
mation on the disk. Many database fragments can be queried

or updated concurrently.
The queries and transactions will enter into the network

through host interfaces. Every host interface maintains a
copy "of the Partitioning Map (PM) of the entire database.
Since the whole database is a lexicographically ordered file
represented by a set of B-trees. the map needs to contain
only a small number of facts for each node: the lexicographi-
cally minimal and maximal facts for each B-tree fragment
that is stored on that node. The map changes only when the
database is re-partitioned. The distribution policy that we
propose in this work provides repartitioning that is rare,
inexpensive, locali/.able. invisible to the system until all of
the shifting of data is complete, and that does not interfere

with the normal operation of the system.
Most of the physical facts that are in our implementation

of a semantic binary database start with an abstract object.
These facts are ordered by the encoding of the abstract
objects, which assigns a unique quasi-random number to
each abstract object. Since there are so many of these tacts,
and since the objects are randomly ordered, we can assume
that traffic to each partition of these facts will be balanced
over time. Other facts in a semantic binary database start
with an inverted category or an inverted attribute (i.e. a rela-
tion between an abstract object and a printable value). It is
possible that at some lime there may be a need to access a
certain attribute or category more often than other attributes
or categories. The same may be true for a specific range ol
values of a given attribute. Since all facts that refer to a par-
ticular inverted attribute or inverted category are clustered
together, this may cause a higher load on some
processor/disk pairs than on others. Since load imbalances
can occur in some kinds of facts but not others, the file con-
taining the facts will be split into two subfiles. The first sub-
file will contain all the facts that begin with an abstract
object. The second subfile will contain the facts that begin
with an inverted attribute or category. Additionally there is a
third subfile containing long data items: texts, images, etc..
which are pointed lo by facts. Each subfile will be initially
partitioned evenly over all the processor/disk pairs in the
system. The first subfile is already balanced; the second and
third subfiles may become unbalanced and will require a
block placement algorithm that allows the data to be reparti-
tioned. By repartitioning data, we will be able to more even-
ly balance the load to each data partition.

4. REQUEST EXECUTION SCHEME

We employ a deferred update scheme for transaction pro-
cessing. This means that transactions are not physically per-
formed until they are committed, but are accumulated by the
database management system as they are run. Upon comple-

tion of the transaction the DBMS checks its integrity and
then physically performs the update. A completed transac-
tion is composed of a set of facts to be deleted from the
database, a set of facts to be inserted into the database, and
additional information needed to verify that there is no inter-
ference between transactions of concurrent programs. In our
parallel database, each node is responsible for a portion of
the database. When an accumulated transaction is performed,
the sets of facts to be'inserted into, and deleted from, the
database must be broken down into subsets that can be sent
to the processors which are responsible for the relevant
ranges of data.

Each host in the system will have a copy of the Partition-
ing Map (PM). The Partitioning Map is a small semantic
database containing information about data distribution in
the system. Figure 1 is a semantic schema of the partitioning
map.

The partitioning map contains a set of ranges and their
lexicographical bounds - the low-bound and the high-bound
values. When a query or transaction arrives, the host will
identify its lexicographical bounds. The host will then use
the partitioning map to determine a set of ranges that needs
to be retrieved or updated and hence the nodes which will be
involved in the current transaction or query.

The partitioning map will be replicated among hosts.
However, this does not imply that we need a global data
structure: the algorithm described below allows updates of
the partitioning database to be performed gradually, without
locking and interrupting all hosts.

A range can be obtained from the node pointed to by the
location reference in the partitioning database. This node
should either have the range or a reference to another node
which contains the range.

To perform load balancing we will need to move ranges
from one node to another. A moved range will be accessible
via an indirect reference that is left at its previous location.
Such an indirect access slows down the system, especially
when the range is frequently accessed by users. To allow a
direct access to the moved range we need to update the loca-
tion reference in the partitioning database. We will not per-
form this update simultaneously for all the host interfaces.
The update will be performed when a host executes the first
query or transaction that refers to the range that was trans-
ferred. The node that actually holds the range will send the
results to the host along with a request to update the parti-
tioning map. This means that the first transaction will have
to travel a little further than all subsequent transactions. The
second and future queries or transactions made through this
host will be executed directly by the node pointed lo by the
location reference.

The data structure at each node which supports indirect
referencing will be exactly the same as the partitioning map
described above. We will call this data structure a local parti-
tioning map.

Each range of facts will be represented as a separate B-
tree structure which will reside on the node pointed to by the
partitioning map. Consider a case where a range has been
moved several times from one node to another. We may have
multiple indirection references to the actual location of the
range. These indirect references will be changed to direct
references afcdeseribe?! above.

science & engineering vol 11 no 4 July 19% 197

I
'II

N RISHIE ET AL.

FACT RANGE

low-bound: String 1:1
high-bound: String 1:1

location
(m:m)

NODE

address: String 1:1

Figure 1 I'lirminning niiip

5. DATA TRANSFER POLICY

In order to ensure thai the database remains consistent
throughout a load balancing data transfer, load balancing
actions are executed as transactions initialed by the system.
A lame range of facts is transferred by executing a series of
small svsicm transactions that transfer small portions of data
from one partition to another. The system transactions arc
subject to the same logging and recovery actions as regular,
user initialed, transactions. Apart from the data transfer, each
small load balancing transaction also includes the data ncc-
essar\ for updating the partitioning map. To ensure that the
partitioning map remains consistent, the partitioning map
update is executed using a 2-phase commit protocol.

6. LOAD BALANCING POLICY

When idle, the host interfaces will send data and work load
statistics recently accumulated from the nodes to a Global
Performance Analyzer (GPA). The host interfaces accumu-
late this data as the results of queries and transactions flow
through them back to the user. The GPA is a process that
analw.es the statistical information obtained and generates
preferable directions of data transfer for each node.

The statistics report will contain only the changes since
the previous report:

• Changes in data partitioning
• Number of accesses for each range
• Free space on each node

The GPA will use a heuristic search algorithm which uses a
choice function to select a small number of possible data
movements for the system. The final state will be estimated
by a static evaluation function S. The GPA will select the
data movement with the lowest value of the resulting static

evaluation S.
The choice function should comply with the following

stratecies:

1. Whenever possible load balancing should be
achieved by joining ranges together. Joining ranges
will result in faster query execution and smaller par-

titioning maps.
2. A criterion for determining preferable destinations

for a range transfer is the desire to move a range to
a destination node which contains the lexicographi-
cally closest range to the transferred range. In other
words, it is desirable to locate lexicographically
close ranges on the same node whenever possible.

3. If a range has an exceptionally high number of
access or requires an exceptionally large amount of
storage - split the range into several parts and trans-
fer them to other nodes.

Each node will be characterized by two parameters:

1. The amount of free disk space on the node. F
2. The percentage of idle time /. In other words the /

is: / = ldlc/T. where T is a given time interval and
Idle is the node's idle time during the time T.

The resulting state will be estimated by the following param-

eters:

1. .4 - the total amount of data that will be necessary to
transfer in the system

2. IIr- the mean square deviation of F
3. I), - the mean square deviation of /
4. M - total number of ranges in the system

The static evaluation function can be represented as:

S = C, *A + C: * DF + C, * O; + G * M.

where C,. C\. C\ and C4 arc constants.

7. CONCLUSION

Our load balancing algorithm will provide our massively
parallel semantic database machine with a method to reparti-
tion data to evenly distribute work among its processors. The
algorithm has very little overhead, as its statistics are accu-
mulated during the normal processing of transactions. The
load balancing is accomplished by repartitioning parts of the
database over the nodes of the database machine. The repar-
titioning will be transparent to the users and will not
adversely affect the performance of the system. Our fault-
tolerant data transfer policy will ensure that the database and
its partitioning maps remain consistent during repartitioning.

We are currently developing a prototype parallel semantic
database on a network of workstations. We will evaluate our
load balancing algorithm on this prototype system and
experiment with ways to optimize our heuristic search algo-

rithm.

ACKNOWLEDGEMENTS \
i

This research was supported in part by NASA (under grant J

NAGW-40801
NATO (under
CDA-931362-

REFEREN

1 Sitani
Multi
Procc
Paral
Dieat
Press.

2 Hua.
Large
IEEE
her I1

3 Lee. '
Mech.
Mulu
Systci

4 Stolf«
Parali
Proce
Einer.

198 computer systems science & engineering vol 11 no 4 ju

LOAD BALANCING IN A MASSIVELY PARALLEL SEMANTIC DATABASE

balancing should be
nay her. Joining ranges
cution and smaller par-

preferable destinations
sire to move a range to
imins the lexieographi-
nsferred range. In other
>cate lexicographically
e whenever possible.
inally high number of
ionally large amount of
several parts and trans-

o parameters:

e on the node. F
I. In other words the /

given time interval and
uring the time T.

v the following param-

NAGW-4080). BMDO&ARO (under grant DAAH04-0024).
NATO (under grant HTECH.LG-931449). NSF (under grant
CDA-9313624 for CATE Lab), and the State of Florida.

REFERENCES

1 Sitaram, D, Dan, A and Yu, P Issues in the Design of
Multi-Server File Systems to Cope with Load Skew'.
Proceedings of the Second International Conference on
Parallel and Distributed Information Systems (San
Diego. January 20-22. 1993). IEEE Computer Society
Press. 1993

2 Hua. K and Su, J 'Dynamic Load Balancing in Very
Large Shared-Nothing Hypercube Database Computers'.
IEEE Transactions on Computers. Vol 42 No 12 (Decem-
ber 1993) pp 1425-1439

3 Lee. C and Hua. K 'A Self-Adjusting Data Distribution
Mechanism for Multidimensional Load Balancing in
Multiprocessor-Based Database Systems'. Information
Systems. Vol 18 No 7 (1994) pp 549-567

4 Stolfo, S. Dewan. H. Ohsie. D and Hernandez, M A
Parallel and Distributed Environment for Database Rule
Processing: Open Problems and Future Directions', in
Emerging Trends in Database and Knowledge-Base

Machines: The Application of Parallel Architectures to
Smart Information Systems. M. Abdelguerfi and S. Lav-
ington. eds. IEEE Computer Society Press. 1995. pp 225-
253
Xu, J and Hwang, K 'Heuristic Methods for Dynamic
Load Balancing in a Message-Passing Multicomputer'.
Journal of Parallel and Distributed Computing. Vol 18
(1993)pp 1-13
Ahmad. I and Ghaf'oor, A 'Semi-Distributed Load Bal-
ancing For Massively Parallel Multicomputer System»'.
IEEE Transactions on Software Engineering. Vol 17 No
10 (October 1991) pp 987-1004
Rishe, N. Shaposhnikov, A and Sun, VV Load Balanc-
ing Policy in a Massively Parallel Semantic Database'.
Proceedings of the First International Conference on
Massively Parallel Computing Systems. IEEE Computer
Society Press. 1994. pp 328-333
Rishe. N Database Design: The Semantic Modeling
Approach. McGraw-Hill. 1992
Rishe, N 'Efficient Organization of Semantic Databases'.
Foundations of Data Organization and Algorithms
(FODO-89) VV. Litwin and H.-J. Schck. eds.. Springer-
Verlag Lecture Notes in Computer Science. Vol 367. pp
114-127. 1989
Rishe. N 'A File Structure for Semantic Databases'.
Information Systems. Vol I 6 No 4 i 199]) pp 375-385

hat will be necessary to

ion of F
on of /
n the system

represented as:

". * M.

provide our massively
ith a method to reparti-

tong its processors. The
s its statistics are accu-
ng of transactions. The
partitioning parts of the
;ise machine. The repar-
le users and will not

the system. Our fault-
ire that the database and
nt during repartitioning.
toiype parallel semantic
is. We will evaluate our
prototype system and

jr heuristic search algo-

bv NASA (under grant

> science & engineering
vol 11 no 4 july 1996 199

SB2 Benchmark (Consumer Survey Database)

The purpose of the test database is to store the information gathered in a typical consumer
survey. All consumers are grouped by the type of the product they use. These groups are
represented in the schema by subcategories G0,G1,...G9. A consumer usually belongs to
several groups. Within each group a consumer may use several brands of the same
product. The integer attributes A0,A1,...A9 are used to indicate which brands the
consumer uses in the order of preference. Sometimes a consumer may want to enter a
comment about any brand he uses. Comments for the corresponding brands are stored in
the attributes C0,C1,...C9. Comments are entered very rarely.

The problem domain can be easily represented in a semantic schema. A relational schema
for Oracle allows several different designs. The design choice impacts both the space
requirements for the database, and the efficiency of the transactions performed. Designing
a relational schema we must take into consideration the characteristics of the data that we
intend to store (which is not required for the semantic schema design). Since the tables
G1,G2,...G9 are going to be sparse, we have two reasonable choices for the schema
design, and we have implemented both.

In the first design, which we call "Sparse," groups are represented as different tables like
in the semantic schema. In the second design, which we call "Compact," all the data for
all the groups is stored in one table having a three-attribute key (consumer, group and
brand). This Compact approach is intended to save space, as it contains rows only for
those brands that are actually used by the corresponding consumer.

The database must be able to efficiently respond to arbitrary queries. Therefore, the
relational database was created fully indexed. Further, Oracle was allowed to gather
statistics on the database prior to running the benchmark transactions.

In the Compact relational design the database itself required less space than in Sparse
relational design, but the total occupied space including indexes was comparable for both
designs, and about 3 times the space required by Semantic Database. The benchmark tests
were performed for two different database sizes. In the first test, the initial database
contained 100,000 consumers, in the second - 500,000 consumers. The actual database
sizes are shown in the results section.

Oracle transactions were written using the Embedded SQL. Transactions for the Semantic
Database were written using semantic API. The same row data files were loaded into the
Oracle and the Semantic Database.

The initial data for the SB2 Benchmark Database (Consumer Survey Database)

The consumer's name, address and comment are strings of random alpha characters. The
length of the string is generated as a random number with a Normal Distribution (a table
of distribution parameters is given).

Each consumer can belong to a number of groups and within that group he can use a
number of brands of the product. He can have a number of hobbies and use a number of
stores. All these numbers are random with a Normal Distribution and parameters
according to the table.

Comment fields are filled for 2% of corresponding numeric brand preference values.

SSN is a random number uniformly distributed in the range 100,000,000 .. 999,999,999.

For the purpose of establishing of a "knows" relation all consumers are divided into
disjoint sets S,..Sn, where each set contains exactly 10 consumers. Then 5 random
consumers from each set S; are related to 5 random consumers from the set Si+1.

There are 20 different stores with names "Store name #1" through "Store name #20" and
types "Store type #1" through "Store type #3".

Expenditure is a random number with a Normal Distribution and parameters according to
the table.

Cid is the ID of a consumer, assigned sequentially.

Table of Normal Distribution parameters:
Lower Upper Mean Variance
bound bound

Name length 5 40 12 5
Address length 15 100 35 20
Comment length 5 255 30 100
Number of hobbies 5 per consumer 0 19 0 10
Number of stores per consumer 1 19 4 10
Expenditure 1 89 20 10
Number of groups a consumer belongs to 1 10 5 4
Number of brands a consumer uses 0 9 1 1

SB2 Benchmark (Consumer Survey Database)
Transactions

Transaction 1:
How many consumers are in the intersection of the ten groups G0..G9.

Transaction 2:
Create a new group G10 and populate it with those consumers who belong to both
Gl and G2 and have Al=l in Gl and A2=2 in G2.

Transaction 3:
How many consumers are customers of store X and have hobby Y, excluding
those who belong to both G3 and G4 and have A3=3 in G3 and A4=4 in G4.

Transaction 4:
For each person from a given (randomly chosen) set of 0.1% of all consumers,
expand the relation "knows" to relate this person to all people he has a chain of
acquaintance to. Abort the transaction rather than commit. Print the length of the
maximal chain from the person.

Transaction 5:
Calculate the number of consumers in each group.

SB2 Benchmark (Consumer Survey Database): SDB vs Oracle

SB2
Database Semantic Oracle Compact Oracle Sparse
of consumers 100K 500K 100K 500K 100K 500K
Source size (Mb)
Database size (Mb)

23.00
51.00

123.00
207.00

23.00
141.00

123.00
648.00

23.00
123.00

123.00
580.00

T1 cold (sec)
T1 hot (sec)

5.76
4.95

29.41
25.62

42.10
28.82

764.10
727.95

32.11
4.21

181.80
21.65

T2 cold (sec)
T2 hot (sec)

0.40
0.11

1.55
0.29

25.34
2.75

153.40
13.88

16.36
0.84

36.61
1.20

T3 cold (sec)
T3 hot (sec)

1.33
1.16

5.84
5.55

90.48
48.34

390.70
389.63

65.51
45.28

276.20
223.28

T4 cold (sec)
T4 hot (sec)

3.14
0.08

11.58
0.28

8.50
1.18

23.64
10.22

5.70
1.11

28.65
7.43

T5 cold (sec)
T5 hot (sec)

9.28
8.70

45.87
43.86

67.84
36.86

187.60
187.83

24.04
5.62

29.90
28.05

T1 cold

500K

142.10
100K If32.11

5.76

i lull ■■■in 64.10

T2 cold

| 153.40
500K

■

100K

H.-.H JO o i
T.SS :

ill 25.34
§§§16.36:
TT40

0.00 200.00 400.00 600.00 800.00! HOra-compact

Seconds ■ Ora-sparse

■ Semantic

T3 cold

0.00 50.00 100.00 150.00 200.00! HOra-compact

Seconds B Ora-sparse

I Semantic

T4 cold

500K

100K

.„..JMHP90.70
276.20

Seconds
I Ora-sparse

I Semantic

500K

100K

0.00 100.00 200.00 300.00 400.00! Im0ra-comPact ! j 0.00

T5 cold

500K

100K

I 1 57.60

0.00 50.00 100.00 150.00 200.00

Seconds

HOra-compact

I Ora-sparse

■ Semantic

8.65

10.00 20.00 3000!B3lOra-compact
I M Ora-sparse

Seconds
■ Semantic

Database size

lllllllllllllllllllllllllllltllllllllllllllllllllllllllillllllllllllllllllllllllllllllllillllllllllllllll 84S.0C

500K

^^ffS.OO '

pfPSl oo

100K

III,!,.. I 141.00
■Mr 123.00
■ 51.00 !
J23.00 !

0.00 200.00 400.00 600.00 800.00

Mb

HOra-compact

B Ora-sparse

■ Semantic

D Source

Page 1

PERSON

Name,Address: String
SSN: Integer

Hobby: String m:m
—»Knows m:m: —»

CORPORATION

Name: String total
Address: String total

LEGAL PERSON

CONSUMER

cid: Integer 1:1, total
expenditure: Integer

/

STORE

Name: String total
Type: String

Vs

GO

a0,al,a2,a3,a4: Integer
a5,a6,a7,a8,a9: Integer
c0,cl,c2,c3,c4,c5: String

c6,c7,c8,c9: String

Gl

a0,al,a2,a3,a4: Integer
a5,a6,a7,a8,a9: Integer
cO,cl,c2,c3,c4,c5: String

c6,c7,c8,c9: String

G9

aO.al,a2,a3,a4: Integer
a5,a6,a7,a8,a9: Integer
c0,cl,c2,c3,c4,c5: String

c6,c7,c8,c9: String

Figure 1. Semantic Schema for SB2 Benchmark

PERSON

PID-key: Integer 1:1
Name,Address: String

SSN: Integer

KNOWS

PersonID-k: Integer
KnowsID-k: Integer

CORPORATION

CorporationlD-key: Integer 1:1
Name: String total

Address: String total

HAS HOBBY

PersonID-k: Integer
HobbyID-k: Integer

HAS STORE

ConsumerID-k: Integer
StoreID-k: Integer

HOBBY

HobbylD-key: Integer 1:1
Name: String

CONSUMER

CID-key: Integer 1:1
expenditure: Integer

Type,ID: Integer

STORE

StorelD-key: Integer 1:1
Name: String total

Type: String

GROUPO

ConsumerlD-key: Integer 1:1
a0,al,a2,a3,a4: Integer
a5,a6,a7,a8,a9: Integer
c0,cl,c2,c3,c4,c5: String

c6,c7,c8,c9: String

GROUP9

ConsumerlD-key: Integer 1:
a0,al,a2,a3,a4: Integer
a5,a6,a7,a8,a9: Integer
c0,cl,c2,c3,c4,c5: String

c6,c7,c8,c9: String

Figure 1. Relational Schema for SB2 Benchmark (Sparse alternative)

GROUP

ConsumerID-k: Integer
Group-k: Integer

Brand, Value: Integer
Comment: String

Figure 2. Relational Schema for SB2
Benchmark (Compact alternative)

Oracle is fully indexed. Best results are chosen for Oracle with/without statistics.

Semantic SQL

Naphtali Rishe

High-performance Database Research Center
School of Computer Science

Florida International University, University Park, Miami, FL 33199
(305)348-2025, Fax (305)348-1707, rishen@fiu.edu, http://hpdrc.cs.fiu.edu

We have adapted SQL, the standard relational database language, to semantic databases. The
original purpose of this adaptation was to be compatible with, and be able to communicate
with, relational tools. Interestingly, it turned out that the size of a typical SQL program for a
semantic database is many times smaller than for an equivalent relational database. While we
have previously demonstrated substantial program-size advantage for other languages, we had
not anticipated an even greater advantage with SQL — a specialized language for relational
databases.

Our ODBC driver for the SDB Engine is fully operational, allowing SQL querying of a
semantic database and interoperability with relational database tools, e.g. end-user systems
like MS Access Query-By-Example. In these tools the number of user keystrokes required is
proportional to the size of the generated SQL program. So again, savings are realized and
simplicity is attained by use of the SDB model.

An embedded SQL preprocessor has been developed and is fully operational.

Our application of SQL to semantic databases allows utilization of full semantics of data,
applies to scientific and spatial data, properly treats missing values, and produces queries
which are typically an order of magnitude shorter than if written in SQL for an equivalent
normalized relational database — see examples in Section 4.

1. SQL INTERPRETATION

We use the same syntax as the standard ODBC SQL (with null values). However, our SQL
queries refer to a virtual schema. This virtual schema consists of an inferred table T defined
for each category C as a spanning tree of all the relations reachable from C. This is
recursively defined as follows:

Let C be a category.

(1) The first attribute of T:

D C—attribute of T, range: C (m:l)

»flrnU-nlMl.mi/lll'l)Rri!ill-rnat.fc;II]'DR(:anilN.Ri-W.

(2) For every attribute A of T, for every relation r whose domain intersects with the range of
A:

D Ari_r'.T— attribute of T, range: range(r) (m:l)
provided the depth of recursion does not exceed the system variable $MAXDEPTH

If the original relation r is many-to-many or one-to-many, the new attribute would be many-
to-one, but many virtual rows would exist in the table T, one for each instance of the tree. If
r has no value for an object, a null value will appear in the virtual relational table.

The name of T is the same as of C,

The attribute names of T contain long prefixes.. These prefixes can be omitted when no
ambiguity arises, i.e.. attribute y is a synonym of the attribute x_y of T if T has no other
attribute z_y where depth(z)>=depth(x).

We note that the range of a virtual attribute may be of multi-media type: numbers with
unlimited varying precision and magnitude, texts of unlimited size, images, etc.

Prior to computing the virtual tables, we eliminate all special characters, including
underscores, from concept names; we augment the schema or the user-view with the
following virtual relations:

• inverted relations: for every relation R, its inverse is called, by default, _R

• for every category C, a surrogate attribute, also called C. This is the identity attribute on
C. It can be used for checking on belonging to a subcategory (let p be a PERSON.; p is
a student iff p.STUDENT is not null) or to produce a printable id of an object (see
Appendix).

• for every category, a combined attribute C__, which is the concatenation of all attributes
of C that are representable by printable strings (this includes numbers, enumerated,
Boolean. The concatenated values are separated by slashes. Null values are replaced by
empty strings.

• infinite virtual relations representing functions over space-time, which in the actual
database are represented by a finite data structure.

2. TECHNICAL NOTES

2.1. Definition of the Extension of a Table

The virtual table T for a category C is logically generated as follows:

(1) Initially, T[C]=C, i.e. T contains one column called C whose values are the objects of the
category.

(2) For every attribute A of T, for every schema relation or attribute r whose domain may intersect
range(A), let R be the relation r with its domain renamed A and range renamed A r, let T be the
natural right-outer-join of T with R. (Unlike a regular join, the outer join creates A__r=null when
there is no match.)

Confidential. HMIPDRC Internal. © HPDRC and N.Rishe,

2.2. Surrogate Attributes

In Release 0.1, the surrogate attribute of each semantic category is the internal id of the object.

In Release 0.2, the surrogate attribute will be defined in accordance with our document on surrogates
(see Appendix).

2.3. User-control of Table Depth

(Used only by sophisticated users trying to outsmart $MAXDEPTH defined by a graphical user
interface; not needed by users posing direct SQL queries without a GUI.)

For each category C, in addition to the default table named C, of depth limited by $MAXDEPTH,
there are also tables called C_i for any positive integer i, with the depth limited by i rather than
$MAXDEPTH. The tables C_i are not returned by the ODBC command requesting the list of all
tables.

2.4. User-specified Tables

(Used only by generic graphical user interfaces; not needed by users posing direct ODBC SQL
queries)

Let C be a category. Let S={ A j ,..., Ak } be some unabbreviated attributes of the table C of type
Abstract-object (i.e. no attribute At ends with an actual concrete attribute of an original semantic
category). (Recall that the name of C is a prefix of each A}).

We define a virtual table T(S) as the projection of the table C on the of attributes SPP comprised of the
attributes S, their prefixes, and one-step extensions of the prefixes.

(An attribute A is a prefix of an attribute in S iff A is in S or A_w is in S for some string w. An
attribute B is a one-step extension of an attribute A iff B=A or B=A w where w contains no
underscores.)

The name of T is generated as follows: for each A; let 5, be the shortest synonym of A(-. The name of
T is: Bl B2Bk

2.5. Semantics of Updates

Release 0.2 supports only restricted updates:

delete from C where condition Removes objects from the root category C (does not delete them from
supercategories of C).

insert into C attributes values assignments

Creates a new object, places it in the root category C, and relates it to some one-step attributes (i.e. the
original attributes/relations of category C and their inverses.)

insert into C attributes query

Evaluates the query, resulting in a set of rows. For each row, a new object is created and placed in C.
It's one-step relationships are assigned values from the rows.

update C set A j=e j,... A jt =ek where condition

Selects a set of object of category C. For each of them updates some one-step attributes. For example,
to make a person become a student: update PERSON set STUDENT=PERSON where condition.
To move the person from subcategory of students to subcategory of instructors: update PERSON set
STUDENT=null,INSTRUCTOR=PERSON

Confidential, FIU/HPDRC Internal. © HPDRC and N.Rtshe,

insert into C R ...

Allows creation of multiple relationships R. This cannot be accomplished with previous commands
when R is many-to-many.
delete from C R where condition

Allows deletion of multiple relationships R.

3. EXAMPLES OF SEMANTIC SQL AND COMPARISON TO RELATIONAL SQL

This section contains: the semantic schema of a Hydrology application; a normalized
relational schema of the same application (a real schema, not our virtual schema); several
SQL statements written for the semantic schema and (for comparison) for the relational
schema.

3.1. Hydrology Application, Semantic Schema

Conlldentinl, FIU7HPDRC Internal. © HPDRC and N.Rishe,

PROJECT

name: String key
description: String
comments: String

starting-date: Date
ending-date: Date

LOCATION

north-UTM: Number key/2
east-UTM: Number key/2

elevation-ft: Number
description: String

serves
(m:m)

PHYSICAL
OBSERVATION

STATION

-»is-part-of m:l: —>
structure: String
comments: String
housing: String

ORGANIZATION

—»is-part-of m:m: —>
name: String key

description: String

by
(m:l)i

IMAGE

image: Raw
subject: String

direction-of-view: 0.360
comments: String

type: Char(3)

OBSERVATION

time: Date-time
comment: String

located at
(m:l)

FIXED STATION

platform-height-fl: 0..50.000

MEASUREMENT
TYPE

name: String key
measurement-unit: String

upper-limit: Number
lower-limit: Number

MEASUREMENT

value: Number

Figure 3-1. Semantic sub-schema for physical observations.

Confidential, FIU/HPDRC Internal. © HPDRC and N.Rishe,

3.2. Relational Schema of the Hydrology Application

PHYSICAL-OBSERVATION-STATION

physical-observation-station-id-key:Integer 1:1; comments:Str'mg; housing-.Str'mg;
structure:Strmg; is-part-of~physical-observation-station-id:mtege.r;

LOCATION

north- UTM-in-key:Number; east- UTM-in-key:Number; elevation-ff.Numbev;
descriptiomString;

ORGANIZATION

name-key:String 1:1; description:Str'mg;

PROJECT

name-key: String
ending-date:Date;

1:1; description:Stnng; comments:Strmg; starting-date:Date;

MEASUREMENT-TYPE

name-key:String 1:1; measurement-unit:Strmg;upper-limit:Number; lower-limit:N\xmber;

FIXED-STATION

physical-observation-station-id-key:Integer 1:1; platform-height-ft:0. .50.000;
located-at—north- UTM:Number; located-at—east- E/ZM:Number;

MEASUREMENT

observation-id-key:Integer 1:1; commenf.Strmg; ft'rae:Date-time; va/we:Number;
o/"--name: String; by—physical-observation-station-id:Integer;

IMAGE

observation-id-key:lntcgcr 1:1; commenf.Strmg; rime:Date-time; image:R&w; subjecf.Str'mg;
direction-of-view:0.. 360; commercto:String; fy/?e:Char(3);
by—physical-observation-station-id:Integer;

Confidential, FIU/HPDRC Internal. © HPDRC and N.Rishc,

Figure 3-2. Relational sub-schema for physical observations. Part I: tables
representing the categories.

PHYSICAL-OBSERVATION-STATION-BELONGS-TO--ORGANIZATION

physical-observation-station-id-in-key.Integer, organization—name-in-key:Stnng;

ORGANIZATION-RUNS-PROJECT

organization-name-in-key:Str'm%; project-name-in-key.Stnng;

PHYSICAL-OBSERVATION-STATION-SERVES-PROJECT

physical-observation-station-id-in-key.Integer; project—name-in-key.Stnng;

ORGANIZATION-IS-PART-OF-ORGANIZATION

organization—name-in-key:Stnng; organization-2—name-in-key.Strmg;

Figure 3-3. Relational sub-schema for physical observations. Part II: tables
representing the m:m relationships.

Confidential, FIU/HPDRC Internal. © HPDRC and N.Rishc,

3.3. Program Size Comparisons: SQL

1. List of the time and housing of temperature measurements over 50 degrees

SQL statement based on semantic schema:

select housing,time from MEASUREMENT where of name=' Temperature' and value>50

SQL statement based on relational schema:

select housing, time

from PHYSICAL_OBSERVATION_STATION, MEASUREMENT

where exists

(select * from MEASUREMENT-TYPE

where name_key = of name and name_key = 'Temperature' and
by_physical_observation_station_id = physical_observation_station_id_key and
value > 50)

Confidential, FIU/IIPDRC Internal. © HPDRC and N.Rishe,

2. The descriptions of organizations and locations of their fixed stations

SQL statement based on semantic schema, Alternative 1:

select description, belongs to located_at_LOCATION from ORGANIZATION

SQL statement based on semantic schema, Alternative 2:

select description, LOCATION from ORGANIZATION

SQL statement based on relational schema:

select description, LOCATION.north_UTM_in_key, LOCATION.east_UTM_in_key

from ORGANIZATION, LOCATION

where exists

(select * from FIXED_STATION

where exists

(select *

from
PHYSICAL_OBSERVATION_STATION_BELONGS_TO_ORGANIZATION

where name_key = organization name_in_key and

PHYSICAL_OBSERVATION_STATION_BELONGS_TO_ORGANIZATION.
physical_observation_station_id_in_key =
FIXED_STATION.physical_observation_station_id_key and

located_at northJJTM = north_UTM_in_key and located_at eastJJTM =
east_UTM_in_key))

Confidential, FIU/HPDRC Internal. © HPDRC anil N.Ri.shc,

10

3. The observations since January 1, 1993 (including images, measurements and their
types) with location of the stations

SQL statement based on semantic schema:

select OBSERVATION_, of_, LOCATION from OBSERVATION where time>' 1993/01'

SQL statement based on relational schema:

(select MEASUREMENTTYPE.*, LOCATION.north_UTM_in_key,
LOCATION.east_UTM_in_key, MEASUREMENT.*, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL

from MEASUREMENT_TYPE, LOCATION, MEASUREMENT

where time > ' 1993/01' and exists (select * from FIXED_STATION where
by physical_observation_station_id = physical_observation_station_id_key and
located_at northJJTM = north_UTM_in_key and located_at eastJJTM =
east_UTM_in_key and of name = name_key)) union

(select MEASUREMENTTYPE.*, NULL, NULL, MEASUREMENT.*, NULL,NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL

from MEASUREMENTTYPE, MEASUREMENT

where time > ' 1993/01' and not exists (select * from FIXED_STATION where
by physical_observation_station_id = physical_observation_station_id_key and
of name = name_key)) union

(select NULL, NULL, NULL, NULL, LOCATION.north_UTM_in_key,
LOCATION.east_UTM_in_key, NULL, NULL, NULL, NULL, NULL, NULL,
IMAGE.*

from LOCATION, IMAGE

where time > ' 1993/01' and exists (select * from FIXED_STATION where
by physical_observation_station_id = physical_observation_station_id_key and
located_at northJJTM = north_UTM_in_key and located_at eastJJTM =
eastJJTMJnJcey)) union

(select NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, IMAGE.*

from IMAGE

where time > ' 1993/01' and not exists (select * from FIXED-STATION where
by physical_observation_stationJd = physical_observation_stationJdJcey))

Confidential, FIU/HPDRC Internat. © HPDRC anil N.Rishe,

11

3.4. Handling of Interpolated Spatial Functions

The following userview contains infinite virtual categories POINT and BLOCK

Confidential. FIU/HPDRC Internal. © HPDRC and N.Rishe,

12

PROJECT

name: String key
description: String
comments: String

starting-date: Date
ending-date: Date

LOCATION

north-UTM: Number key/2
east-UTM: Number key/2

elevation-fi: Number
description: String

serves
(m:m)

located at
(m:l)

PHYSICAL
OBSERVATION

STATION

—>is-part-of m:l: -»
structure: String
comments: String
housing: String

FIXED STATION

platform-height-fi: 0..50.000

ORGANIZATION

—»is-part-of m:m: —>
name: String key

description: String

by
(m:l)i

MEASUREMENT
TYPE

name: String key
measurement-unit: String

upper-limit: Number
lower-limit: Number

IMAGE

image: Raw
subject: String

direction-of-view: 0.360
comments: String

type: Char(3)

OBSERVATION

time: Date-time
comment: String

MEASUREMENT

value: Number

from
(m

POINT

time: Date-time
x,y, value: Number

in
(m:m)

m)

BLOCK

timel: Date-time
xl, yl, value l,x2: Number

time2: Date-time
y2,value2: Number

Conndenlial, FIU/HPDRC Internal. © HPDRC and N.Rishc,

13

Query 1: temperature value(s) of a given point

SELECT value FROM POINT WHERE name="Temperature" and <time,x,y>=

Query2: areas that had temperatures between 1 and 1.1 degrees

SELECT time 1 ,time2,jc l ,x 2,y i ,y 2

WHERE name="Temperature" and value>= 1 and value<=l.l

4. APPENDIX: SURROGATES

Object surrogates

For some categories in the schema, our main userview contains surrogates, which are strings
that identify objects of that category. These surrogates are computed virtual attributes; they
are used in our database languages, e.g. the Semantic SQL.

The database schema defines semantic keys for some categories. A semantic key of a
category C is a set of relations and attributes of C that when they all exist (non-null) jointly
identify the objects of a category. To compute a surrogate from a semantic key we
concatenate the values of the key attributes and relations of an object, replacing any abstract
objects in the key relations by their surrogates if the latter exists (otherwise the whole
surrogate is null).

For each category C having surrogates, the latter are represented in a virtual attribute:

□ C-id — attribute of C, range: String (1:1)

It is formally defined as follows.

Let k(C) be the semantic key of C if one is defined in the semantic schema. (If k(C)=(i? \,R2,
... Rn) it means that there is an integrity constraint:

for every c1; c2in C:
for every xlv.., xn in OBJECT:
if c 1 R l x i and ... and c j Rn xn and c2R\Xx and ... and en Rn xn
then Cj = c2

(The relations Rt do not have to be total, unlike keys of relational databases; nor do they have
to be attributes; they have to be m: 1 or 1:1.)

We define auxiliary concatenation operator xy: If x or y is null then the result is null.
Otherwise, the result is concatenation of x and y separated by the character '/'. E.g.
'abc'|'cde'='abc/cde'.

The surrogate of an object x, s(x), is defined as follows (null if any part is undefined):

If x is a string then s(x)=s.

Confidential, FIU/HPDRC Internal. © HPDRC and N.Rishe,

14

If x is a concrete object other than string (number, Boolean, date) then s(x) is a conversion of
x into a string.

If x is and abstract object which belongs to only one category, C, for which a semantic key is
defined in the schema, then:

Let (Rh ... , Rn) be the alphabetical ordering of the semantic key of C.

s(x)= s(x.Rl)|s(x.R2)... s(x.Rn)

Cotifitlenlial, F1U/HPDRC Internal. © HPDRC and N.Rishe,

1. SQL INTERPRETATION 1
2. TECHNICAL NOTES 2

2.1. Definition of the Extension of aTable 2
2.2. Surrogate Attributes 3
2.3. User-control of Table Depth 3
2.4. User-specified Tables 3
2.5. Semantics of Updates 3

3. EXAMPLES OF SEMANTIC SQL AND COMPARISON TO
RELATIONAL SQL 4
3.1. Hydrology Application, Semantic Schema 4
3.2. Relational Schema of the Hydrology Application 6

3.3. Program Size Comparisons: SQL 8

3.4. Handling of Interpolated Spatial Functions 11
4. APPENDIX: SURROGATES 13

Confidential, F1U/HPDRC Internal. © HPDRC anil N.Rishe,

